Predicting Paying Users

in a Free-to-Play Game

by Tiago Tex Pine
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This is an attempt to produce a machine learning pipeline and a model
that can predict which users are more likely to make purchases and
spend money in a free-to-play mobile game after some time of play.

Introduction

The mobile games industry is dominated by the free-to-play model, but
less and less companies are succeeding in making their business work. A
huge amount of consolidation is happening as fewer and fewer games
make money, and the ones in the 100 top charts respond for over 80%
of all game revenue of the app stores.
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What does the successful games do? Increasingly, it is a matter of Live
Ops - keeping the game alive and relevant for its core base audience.

As the ecosystem has been flooded with new games over the last 5
years, the cost of acquisition of a single new user skyrocketed. The cost
of acquisition of a single new user has reached thresholds between $7
to $10 each, and in the last few years companies realized it's much more
expensive to acquire a new user through ad-buying than it is to keep an
existing user playing the game and spending money on it.

Hence, Live Ops in a free-to-play game has two main goals:

1. Keep Retention as high as possible, so the game and its
community remains alive and the company doesn’t have to
acquire more new users in the expensive ad market.

2. Convertplayers as much as possible - Paying Users are not
only a source of revenue, but they are also the most
enthusiastic users and create network effects that help keep
other uses engaged, helping to stabilize retention too.

Therefore, the ability to scan every new user that downloads the app
and predict which ones are more likely to become a Paying User can be
a big benefit for keeping both retention and revenue in good levels.

With a more focused cohort to work on, a Live Ops teams can act more
effectively on them - for example, by initiating direct marketing
campaigns, a direct customer care contact, or a unique Starter Pack offer
not available for others (working on our exclusivity bias).

Goal

The goal of our model is to predict potential Paying Users with 3 days
or less of data.

In other words, predict if any new user who downloads the game and
start playing will eventually become a Paying User in the future only by
looking at his first 3 days after installation.

Game and Data

An undisclosed game company has agreed to provide us access to their
data on a Mobile Multiplayer Strategy Game, with similar RTS-like
mechanics to notable mobile titles such as Clash of Clans, Castle Crash,
Game of War, Rival Kingdoms and Siegefall.
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Overview of Game Mechanics

Like the games of reference, our game is a strategy game where the flow
is divided in basically two parts:

1. Combat another Player

2. Build your Base

The Combat phase is truly the core of the game. Players attack each
other to loot resources and earn rankings in a competitive multiplayer
League (a sort of leaderboard). As the player progresses in the ranks, she
will need more and more powerful armies to attack successfully - and
more and more powerful defenses to avoid being looted.

These upgrades are chosen in the Build phase. Here, players construct
their base and upgrade their troops to keep competitive. And although
the core of the game is the Combat phase, the reality is players spend a
lot more time in the Build phase. Just consider the amount and variety of
options players have to choose from:

= which building to construct;
= which troop upgrade to invest;
= which troops to train and;

= which power-ups or in-app purchases to buy.

Moreover, the game design around these options is always built on top
of complicated dependency trees that take a /ot of time to build.

As an example, consider, these “tech trees” from the free-to-play game
Newerth in the Appendix. It is a deep tree by itself - and in some of
those games those trees can take over 5 months to be maxed, given
how the game economy is balanced to manipulate upgrades cost in
resources and real time to build. Consider also the fan-made table from
Clash of Clans in the Appendix for a demonstration how fast those
things scale over the game progression.
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All of this is, of course, intentional: free-to-play games monetize when
players want to “speed-up” this process.

Features of our Data

The data we have to work on is on the file player_data.csv in the
capstone folder. Let’s consider what kind of features we have available,
and what they mean in the game mechanics:

= battles_... features contain information about the actual player-
versus-player (PvP) interactions in the game. For example, how
many attackshow many “revenge” counter-attacks, how many
resources (Gold, Elixir and Trophies) were earned or lost, etc.
The “start” sub-features are the level of success of an attack:
players can earn 1, 2 or 3 stars for their performance.

= clan_... features are about the participation of each player in
Clan activities. In our game, players can donate troops or
request more troops to other players in the same Clan.

= connection_... features are about technical stability of the
game.

= events_.. features about participation in time-limited events in
the game. Once in a while the game offers the opportunity to
engage in special missions that are not normally available, and
are only available for a few hours. Hence, this is, indirectly, a
measurement of engagement with the game itself.

= friends_... are the overall information on how many other
players each use has in their in-game friends list.

= gifts_...contains the amount of time each player received gifts
from the Live Ops team. Developers can issue one-time gifts for
one or more players for a variety of reasons, for example, if the
game experienced lots of server instability.

= is_paying_user the label we are trying to predict.

= offers_... are time limited promotions on in-app purchases,
such as Bundle Packs with lots of different resources, that the
developer issue as a means to increase conversion and revenue
temporarily.

= powerup_...are special boosts players can earn or purchase that
affects their effectiveness in combat. These are not the troops
themselves, but some kind of special protection or power. For
example, in Siegefall, players can bring spell cards to battle and
throw them at the enemy to help the troops win. This
mechanics would be considered a “powerup” in our data.

= resource_op_... those are the operations in the game that
consume resources. Any upgrade, troop creation, damage
repair or building construction is considered a resource
operation. There are many of them, since the game has several
different options available to spend your currencies on.

= rewards_... are actually special earnings received outside the
main combat->loot loop of the game. For example, when a
time-limited event grants extra rewards.

Confidentiality Disclaimer

All player information has been anonymized - no information that could
identify users, such as demographics or personal emails, are available.
Only data of gameplay and some few other extraneous information like
device/OS is present.

Also, the identity of the company, the name of the game and very
specific information on how each feature works in the game (like the
resource operations) will remain undisclosed - but it won't affect our
capacity to develop machine learning algorithms.

Data Pre-Processing

Basic information and Splitting samples

The data at player_data.csv was collected from the game’s server SQL
database and compiled in a format friendly to machine learning
algorithms. Here are some important traits of how it is formatted:

= Eachrow isa player.

= All data have been retrieved only from the latest major
version of the game, all builds under the “1.3” major revision.
We are users from older versions because between major
updates mobile free-to-play games usually add or change
features that may significantly change player behavior.

= The goal of our model is to predict potential Paying Users
within their first 3 days of activities. Hence, all data is an
aggregation of only the first 3 days of play.
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Cownload

Download

First Purchase

= Incase a player has become a Paying User before completing 3
days of activities, we only grab data until the first purchase
happens. Because after an in-app purchases, combat activity
and resource flows can be very different Regular Users, and we
don‘t want to use them.

User Distribution

Let's start by looking into the data and how users distribute in the label
we want to predict:

Tetal number of players: 318,298
Memory usage: 482,416 MB

Original features: 198

Humber of Paying Users: 288

Humber of Hen-Paying Users: 389,398

We can see this is going to be a challenging Machine Learning task
because:



1. The amount of Paying Users is very low compared to the
amount of regular free-to-play users. With such class
imbalance, we will need several methods and a complex
pipeline to get the best possible classifier.

2. The main dataset is too big to be processed locally in a desktop
machine after we do the one-hot encoding on string fields, the
sheer size of the database in memory will more than double,
which can lead to hangs and crashes.

The first problem will require a well-built pipeline to be addressed. The
second one, we can solve by creating samples and training our model
on them.

Samples

We extract all 908 available Paying Users and engineer samples in order
to maximize our chances to train and generalize our classifier. These are
the datasets we will construct:

1. Training sample, with 40k users, 538 Paying Users among
them. This will be our main dataset to train and cross-validate
classifier iterations.

2. Validation sample, with 20k users, 252 Paying Users among
them. This will serve to validate our methods with the Training
Sample, but never being used to train the classifier directly
(otherwise it would be a huge methodological problem).

3. Asmall Test sample of 100 users, with an even split of 50%
regular users and 50% paying users. We will use it to test how
generalized the final classifier is.

4. Alarger Test sample with 20k users and a much smaller,
"natural” proportion of Paying Users, of about 0.2% of them,
like in the original data. This will test how precise the classifier
can be in a real-world context where Paying Users are very
scarce.

5. Anadditional sample with all Paying Users, for data exploration.

Users Regular Users Paying Users % of Paying Users

Training 40000 39496 504 1.260%
Validation 20000 197438 252 1.260%
Even Split 200 100 100 50.000%

Natural Split 20052 20000 52 0.250%
Paying Users 908 0 08 100.000%

In the process of constructing these samples, we also one-hot encode all
string columns (like "device_model") into binary features the learning
algorithms can use.

Exploration

Plotting our Data

We'll look into some of the features that should be among the most
important ones to classify and cluster users in the game:

= PvyP attacks
= Trophies earned, which are an indication of PvP performance.
= Donations to the Clan, which indicates level of social activity .

= Events, which denotes how often the user comes back to the
game.

= Friends, another social activity measure.

Distribution

= Usage of a Power-up.
= Usage of a Resource Operation.
= Earnings of a Reward Type.

= Usage of the most popular Hero.

Boxplot

We can clearly see a big distance of outliers from the mean and median
of the data. The inter-quartile range can't even be seen in the graphic.
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Features

This indicates our data is probably shaped as exponential distributions,
not normal distributions. We have the mean and median and IQR very
close to zero, while outliers strongly deviate from the norm.

Scatter Matrix

A scatter matrix may provide us better information on how those
features correlate, after normalizing all data to a space between O and 1
for consistency in the graphs.

The result is in the Appendix. The matrix point to another distinct
problem, related to the shape of the boxplot before: the main issue is
that a huge number of users have values very close to zero in all
features.

This is actually expected in a free-to-play model: usually, over 50% of all
new users quit in minutes after downloading the application. Consider
this graphic for an expected retention curve in a free-to-play game, on
the side.

Average Retention Curve for Android Apps



In a sense, any users who stick with the game over 3 days will be the
minority when considering the total universe of all users who ever
booted the game app.

Even among paying users we may have some of this problem. Some
users will only really start playing the game after doing the first
purchase in the first few days - the moment at which our trackers stop
(all data is filtered to only have trackers before the first purchase).

Log-transforming

Since our data is heavily skewed and probably following an exponential
or log-normal curve, we can try to log-transform it for visualization
purposes.

In the Appendix, we have 2 other scatter matrices after log-
transformation, one for Regular Users and another for Paying Users.
Log-transformation helps to better visualize the data and draw some
better conclusions:

Regular Users vs. Paying Users

The scatter matrices confirm the general behavior that is expected from
Paying Users, as users who explore more the game even before making
the first purchase.

1. The usage of Hero 2 is heavily associated with non-paying
users. Paying Users tend to use other Heroes after some time
playing.

2. Paying Users commit more to Events.

3. Paying Users tend to attack more and win more Trophies - they
perform better in combat.

4. Surprisingly, Paying Users are not more interested on making
Friends in the game.

One additional insight: the correlations in these features, even if
relatively weak (like resource operation 17 with participation in time-
limited Events) hints many of our features are not conditionally
independent from other features. This eliminate the possibility of
models that assume independency, like Naive Bayes.

PCAs

We can also have a glimpse on how Paying Users and Regular Users
distribute in the hyperspace by reducing dimensions with PCA, and the
plotting the relationship on the components. (We'll log-transform and
standardize the data, as this will result in more legible graphics across
the charts.)

In the charts, Regular Users are blue dots and Paying Users are green
dots. Clearly, Paying Users are very much mixed with the Regular Users
in the latent factors of the dataset. That hints they will be hard to
classify, so we will need very strong learners to split them apart.
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Model Selection

Choosing the Algorithm

First, we need to complement our knowledge on the data with a quick
classifier run just to assess how accuracy scores looks like. A Logistic
Regression is a fast model to check.

precision recall fl-score  support

a B.29 1.0@ 1.8@ 19748

1 B.87 8.29 8.44 252

avg / total B.29 e.99 a.99 o808

This classification report shows we have a big problem when it comes to
classifying Paying Users correctly. While the average total F1 may look
good, the numbers for Paying Users (class '1') are very low. Clearly, this
issue is a by-product of the huge class imbalance between classes 0 and
1in the dataset.

Choosing the Scorer

Recall?

Recall, in particular, was quite bad in the initial model. This is very
concerning as in the free-to-play model, it's costlier to lose a good lead
than to follow a bad lead.
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Following a bad lead (false positive) results in linear costs for the Live
Ops team. But losing a good lead (false negative) results in exponential
losses: a single Paying User in the free-to-play model can represent
hundreds, even thousands of dollars of revenue on her lifetime. One
Paying User can be well worth $500 or more.

Hence, we need to prioritize Recall, very much like machine learning in
Medicine do. (For those systems, is also far costlier to miss 1 diagnosis of
cancer, for example, than to falsely diagnose 1 healthy patient.) But we
also don't want to lose control on Precision, as too many false positives
will also be very costly. So, we need a scorer that weights in both.

FBeta

The FBeta scorer allow us to use a Beta term that weights the F-score
calculation more in favor of Precision or more in favor of Recall.

Fy— (146 precision - recall

(8 - precision) + recall

When we plot in a table an FBeta score with Beta=3, we discover this
FBeta function can be perfect for us: the score will initially increase
much quicker as we improve Recall, but only achieve top performance if
Precision starts to rise too.

See the Appendix for a simulation of this scorer.

ROC Curves

We can start by assessing the ROC curve of different classifiers, in order

Receiver Operator Characteristic

—— RandomForestClassifier (area = 0.80)
e — AdaBoostClassifier (area = 0.91)
- —— BaggingClassifier (area = 0.77)
e — LogisticRegression (area = 0.86)
e — XGBClassifier (area = 0.94)
Random Guessing
=+ perfect performance

00 02 04 06 08 10
false positive rate

to check which ones are better than pure chance and which ones are
closer to a perfect fit. (We test with standardized data, as it is highly
recommended for Logistic Regression and doesn't really affect the other
ones which are more based in Decision Trees.)

The best algorithms are the ones using boosting techniques.
Surprisingly, Logistic Regression seems to be better than the ones
heavily reliant on Decision Trees, which may indicate a tendency in the
data to overfit.

XGBoost

At this point, seems like the better idea to use the powerful XGBoost an
implementation of the gradient boosting decision tree algorithm. This
*ensemble method* is known to be flexible, fast and accurate, and it has
won lots of competitions on Kaggle. (More information about the

algorithm at http://xgboost.readthedocs.io/en/latest/model.html )
Given how hard it seems will be to split Paying Users from regular users,

as we observed in the Exploration section, it seems fitting to try to use
the best algorithm available for hard classification problems.

Feta

Learning Curve

This is how an untuned learning curve looks like under the XGBooster
classifier.

Untunned classification report:

precision recall fl-score  support
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From the shape of the learning curve, our model is probably suffering
from high Bias. Our FBeta is quite poor and far away from a desirable
threshold of at least 0.5

So we can tune it and increase Variance of the model, working
to increase Recall, and keeping Precision in acceptable levels in the
process.

Parameters and Validation Curves

In order to better explore the potential impact of tuning XGBoost's
parameters, we can use Validation Curves to assess if each of them has a
measurable impact on improving our Recall.

XGBoost has a lot of parameters, but for this analysis we can focus on
the ones that can yield the best results:

= max_depth: the maximum depth in which the tree branches;

= min_child_weights: the minimum weight a leaf node must
have;

= gamma: minimum loss reduction to branch a leaf;

= colsample_bytree: subsample ratio of columns when
constructing each tree;

= subsample: how much data is collected to construct new trees;
= reg_alpha: the L1 regularization term;
= reg_lambda: the L2 regularization term;

= learning_rate: shrinks the feature weights to make the
boosting process more conservative;

= scale_pos_weight: controls the balance of positive and
negative weights, good to adjust our class imbalance;

= max_delta_step: constrain on the maximum weight a tree can
have (the higher the more conservative the algorithm);

= colsample_bylevel: subsample ratio of columns for each split
in each level;

= p_estimators: amount of trees;


http://xgboost.readthedocs.io/en/latest/model.html
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Looks like we may have a problem: even with the best model, this data
seems to be nearly untrainable. Increasing values doesn't seem to
impact our ability to increase test values, except for one of the
hyperparameters (scale_pos_weight that, not coincidentally, deals with
class imbalance). In three of them - learning rate, max_depth and
n_estimators - we actually have overfitting, as the score improves in the
training set but remains flat in the test set.

So before tuning the XGBoost classifier, we can try to take a step back
and do data processing techniques first.

Data Processing

Selecting Data and Sampling Operations

We can attempt techniques to process our data to help the algorithm
learn better:

1. Remove outliers.
2. Feature selection.

3. Undersample regular users.

4. Oversample synthetic Paying Users.

The assessment on how effectively these techniques progress will be
made based on the score of an untuned XGBoost results:

Scores on Training set Scores on Validation set
Recall: 0.26 Recall: 0.35

Precision: 1.00 Precision: 0.95

FBeta: 0.28 FBeta: 0.37
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Outlier Removal

Conceptually, the problem with outlier elimination is that, by
definition, free-to-play models rely on outliers. Not only Paying Users
are buying currency and accelerating much faster than regular users,
but the very dedicated user - paying or not - is key to keep Guilds active
and the metagame of a multiplayer game going.

By definition, the 2% of our users who are top players in the game also
create a lot of network effects that keep the game community alive,
and the game profitable month after month.

Therefore, we need not only strong techniques to find those outlier who
really consistently skew training across many features, but also we need
to be conservative in the tuning and careful in the hyperparameter
search.

Outlier Detection through
Dimensionality Reduction

We are going a technique similar to the one used on this code for
anomaly detection through deep neural networks:
httos://qithub.com/pedroconcejero/h2o _training/blob/master/2 h2o a
nomaly_detection.r But instead of a network that constrains information
through layers with less neurons, we will accomplish the same idea by
using PCA.

The idea is to:

1. Reduce the dimensionality of the data by transforming it into PCA
components.

2. Inverse-transform it, extrapolating the reduced data back to the
original feature space

3. Runa mean squared error for each player, between the original
data and the transformed one, to assess how much deviated
from the original vector.

4. Use this score as an “outlier score” to decide which ones to
remove.

In theory, this technique allows us to select outliers based on the latent
factors of the data, and exclude only the ones that consistently deviates
from the normal across many features.

The results are as follows. Here's the participation of Paying Users among
the top X outliers:
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Clearly, the high the outlier score, the greater the participation of Paying
Users. This is expected, as Paying Users will tend to be statistical outliers
a lot more than regular users.

Cutting Criteria

The goal is to cut outliers and re-train the classifier to acquire better
scores. As a cutting criteria, we are going to use the distance in
standard deviations away from the mean of all “outlier scores”.

Also, we should not cut any Paying User because, as we've seen, they
are disproportionally represented in the higher tiers. As a scarce class,
excluding them may harm our ability to predict them in the first place.

Optimizing the Method

We can now grid-search for the best possible FBeta by varying out
outlier cutting criteria by:

1. The amount of dimensions to reduce the data to.

2. The amount of standard deviations to use as cut criteria.

These are the top FBetas in our search:

components standard_deviations train_cv_score validation_score

365 141 2 @.289759 ©6.414226
335 135 2 @.289549 6.414226
4a5 149 2 @.289583 6.485858
325 133 2 @.287614 6.486828
4868 148 2 G.287662 6.485858
418 15e 2 @.281237 6.414399
246 116 2 @.283396 6.418729
445 157 2 @.283484 6.418a42
428 152 2 @.285566 6.485198
285 189 2 @.28515@ 6.486709

By applying the optimal value of 147 components and 2 stds, we get the
following improvement in our confusion matrices:

Sceres on Training set Scores on Validation set
Recall: 0.28 Recall: 0.38

Precision: 0.97 Precision: 0.81

FBeta: 0.31 FBeta: 0.40
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The score in both sets improved a bit, so it seems we generalized the
model a bit better. But a consequence in the Validation set is the
increase of false positives, since we removed the most extreme regular
users and the algorithm now classifiers more users with great activity as
Paying Users.

Feature Selection

The next method we can try is to eliminate features that introduce more
noise than information. We are going to use a Recursive Feature
Elimination to rank the best features in terms of reducing the noise and
optimizing the learning.

RFEs are pretty good to improve learners that classify images - and
since we also have a large feature space, like images do, we can try to
use it to really optimize our model.

RFE Results

Here's the top features selected by the RFE algorithm. Columns are:
= is_feature_selected: if the RFE selected the feature

= feature_ranking: the ranking as per the RFE algorithm. The
lowest, the better.

= cumulative_train: our own cross-validation test in the Training
set using the cumulative of all previous features in higher
rankings.

= cumulative_validation: our own test on the Validation set
using the cumulative of all previous features in higher rankings.

is_feature_selected feature_ranking :_train !
resource_op_type_19 True 1 0.102508 0.180845
resource_op_type_24 True 1 0.174984 0.259574
resource_op_type_19_amount True 1 0.189860 0.263605
resource_op_type_17_amount True 1 0.189901 0255428
resource_op_type_13 True 1 0.187864 0.004308
resource_op_type_1 True 1 0.278611 0.366470
has_clan True 1 0.268955 0.386470
resource_op_type_13_amount True 1 0.293111 0.382675
device_platform_Apple True 1 0.301282 0.398825
player_language_English False 2 0.309366 0.406879
resource_op_type_30_amount False 3 0.309300 0.004245
clan_requested_troops False 4 0.305164 0.394626
battles_defense_won False 5 0.307561 0.384858
resource_op_type_24_amount Falze 6 0.305285 0.398490
resource_op_type_17 False T 0.305425 0.402854
resource_op_type_1004_amount False 3 0.307495 0.394461
clan_features_joined_after_trackers False 9 0.307354 0.414228
resource_op_type_5 False 10 0.307495 0.410042



Tuning the Results

We created the cumulative_train and cumulative_validation columns in
order to tune the results of RFE. While very good, RFE isn't perfect, and
by sorting with our own cumulative FBetas we find out we can benefit
from inserting more features:

is_feature_selected feature_ranking :_train > |
device_os_iPhone 05 8.3 Falze 58 0.309498 0.414226
clan_features_joined_after_trackers Falze 9 0.307364 0.414226
device_model_TCL False 59 0313633 0414226
events_joined_after_trackers False 43 0.313767 0414053
resource_op_type_34 False 26 0.309498 0.414053
resource_op_type_36_amount False 54 0.311633 0.414053
resource_op_type_20 Falze 80 0.309498 0.413880

This sorting shows that the sweet spot is not only with rank 1 features,
but with all features all the way to ranking 58. Hence, we can now
decide in definitive to select only these features for our model:

resource_op_type_19
resource_op_type_24
resource_op_type_19_amount
resource_op_type_17_amount
resource_op_type_13
resource_op_type_1

has_clan
resource_op_type_13_amount
device_platform_Apple
player_language_English
resource_op_type_30_amount
clan_requested_troops
battles_defense_won
resource_op_type_24_amount
resource_op_type_17
resource_op_type_1004_amount
clan_features_joined_after_trackers
resource_op_type_5
resource_op_type_14
device_model_samsung
device_os_Android 0S 4.1.2
device_os_Android 0S 4.2.2
device_os_Android 0OS 4.4.2
resource_op_type_14_amount
device_os_Android 0S 6.0.1
resource_op_type_26_amount
battles_revengedefense
player_language_German
battles_attack
resource_op_type_5_amount
device_os_Android OS 5.0
battles_defense
resource_op_type_18_amount

resource_op_type_34

powerup_type_5
connection_joined_after_trackers
resource_op_type_35_amount
resource_op_type_1004
battles_attack_lost
resource_op_type_21_amount
device_os_Android 0S 5.0.1
device_model_HUAWEI
battles_trophies_total
device_model_iPad2,5
powerup_type_13
device_model_HTC
resource_op_type_34_amount
resource_op_type_26
powerup_type_7
powerup_type_12
events_joined_after_trackers
resource_op_type_3
device_platform_WP8Store
battles_hero_2
resource_op_type_12_amount
battles_gold_lost
battles_trophies_avg_lost
battles_elixir_lost
resource_op_type_39_amount
battles_elixir_earned
powerup_type_11
resource_op_type_36_amount
battles_revengeattack_won_star_3
battles_trophies_avg_earned
device_os_iPhone 0S 9.2

device_os_iPhone 0S 8.3

These are the results in the confusion matrices:

Scores on Training set
Recall: 0.29
Precision: 0.98

FBeta: 0.31

Regular

True label

Paying User
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A slight improvement. On the other hand, we eliminated a lot of noise
and complexity by getting rid of low-quality features, which can have

Scores on Validation set
Recall: 0.39

Precision: 0.80

FBeta: 0.41

Regular

True label

Paying User

S

el

&
&

Predicted label

&

very positive effects moving forward as we tune the model more and
more.

Also, as a nice side effect, we can easily communicate to stakeholders
which features seem to be causing the largest impact on the conversion
of regular users to Paying Users. Game designers, for example, can
maybe do something in games updates about the Resource Operation
#19, increasing its need in the game progression at the player level-ups
his base and his army.

Undersampling Regular Users

When dealing with highly imbalanced datasets, the idea of
undersampling the majority class is to eliminate, move or replace data
points too close to the boundaries with the minority classes.

By manipulating the dataset with undersampling, we can improve the
odds our classification learners will better learn to identify minority
classes - in particular if our classifier uses Decision Trees as its
underlaying engine, which is precisely the case for XGBoost.

Two techniques will be used: the removal of data point through the
search for Tomek Links, and Instance Hardness Threshold to remove
data points based on the difficulty to classify them.

We are going to use the imbalanced-learn package, a project that has
integration with sklearn.

Tomek Links

The idea behind Tomek Links is to eliminate data points for which the
nearest neighbor is a member of another class. The idea can be
illustrated in the graphic.

lllustration of a Tomek link

—  Minority class.
- Majority class
Tomek link
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+
+
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Tomek Links can be used to remove one or both of the data points
above. In our case, as discussed, we will remove only regular users,
leaving Paying Users in the dataset.

Here’s the amount of reduction in the Training dataset:

Before  After Change

Users 39514 39364 -0.4%

Regular Users 39010 38360 -2.2%

And the scores result:



Scores on Training set Scores on Validation set

Recall- 0.29 Recall: 0.39
Precision: 0.98 Precision: 0.80
FBeta: 0.31 FBeta: 0.41

Regular Regular
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Paying User Paying User
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Practically no change, but at least we removed potentially problematic
data points and that could improve our further efforts. Nonetheless, we
need other methods.

Instance Hardness

Instance Hardness is a specific algorithm in which a classifier is trained
on the data and the samples with lower probabilities are removed. The

inner workings and the math of the algorithm is explained in this paper:

http://axon.cs.bvu.edu/papers/smith.m12013.pdf .

In other words, data points are removed based on their classification
weakness or how close of being misclassified as Paying Users they are.

We configure this algorithm to try to reduce 3% of all regular users,
(although the calculation of this particular algorithm cannot always
guarantee this number is going to happen exactly).

The resulting reduction is as follows:

Before  After Change

Users 39364 38198 -3.0%
Regular Users  388G0 37604 -3.0%

And the score results in the Training and Validation sets:

Scores on Training set Scores on Validation set
Recall: 0.55 Recall: 0.56

Precision: 1.00 Precision: 0.35

FBeta: 0.57 FBeta: 0.53

Regular Regular
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We manage to improve our scores substantially, but we need to be
careful with overfitting at this point. If the score in the Training set
starts to improve much faster than in the Validation set, this is a sign our
model is starting to overfit. Moreover, the sharp increase of false
positives in the Validation set is also an extra indication of overfitting.

For now, we can stick to these results as the Precision in the Validation
set is still very much acceptable from a business perspective.

Oversampling Paying Users

This is the reverse operation from before: the idea is to oversample the
minority class of Paying Users and create synthetic datapoints that add
more information to the model, so the learner can have a better grasp of
what those inviduals look like.

Oversampling is frequently used in domains like Medicine, where, for
example, a given cancer detection algorithm may have very few images
to learn how to classify a tumor.

SMOTE

We will use the well-know SMOTE algorithm to create these synthetic
Paying Users in the Euclidean space between real Paying Users.

Predictive Modeling - SMOTE

* Synthetic Minority Over-sampling Technique

Dim 2

SMOTE is reasonably customizable, so we can actually make a grid-

search looking for the best possible hyperparameters that
maximizes our FBeta scores.

Here's the best results:
= kind: the type of SMOTE algorithm, we will use borderline1

= ratio: how many synthetic users will be created on each class.

For us, we will create as many Paying Users as we have Regular
Users.

= k_neighbors: number of nearest neighbours to be used to
interpolate date and construct synthetic samples between
them. Our value will be 8.

= m_neighbors: number of nearest neighbours to determine if a
minority sample is in danger. This value usually has a bigger
impact in our results than k_neighbors. Our value will be 20.

Results

The resulting oversampling looks like this:

Before After Change

Users 38198 75678 98.1%
Regular Users 37694 37839 0.4%
Paying Users 504 37839 T407.7%

We doubled the number of total users and dramatically increased the
amount of Paying Users. By fitting the XGBoost with this data, we have
the following scores in our sets:

Scores on Training set Scores on Validation set
Recall: 0.99 Recall: 0.72

Precision: 0.99 Precision: 0.20

FBeta: 0.99 FBeta: 0.57

Regular Regular
E :
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The FBeta and Recall in the Validation set have improved considerably,
with the downside of getting a lot more false positives - but
the proportion of roughly 1 out of 4 leads for potential Paying Users

is still very good and would optimize tremendously the efforts of Live
Ops teams.


http://axon.cs.byu.edu/papers/smith.ml2013.pdf

Note, however, that our FBeta scores in the Training set are looking
super-high, but the presence of synthetic users is now skewing the
scores very much.

It is important, thus, to filter synthetic users out when evaluating our
confusion matrices from now on. They will still be used in all fitting, but
not on testing. Here's the result without on the Training set without
them:

Scores on Training set, only legit users

Recall: 0.72

Precision: 0.53
FBeta: 0.70

Regular

True label

Paying User
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Predicted label

Without synthetic users, it’s clear the results for the legitimate Paying
Users are much better than the results of before. Looking at a previous
confusion matrices on the Training set before the SMOTE, we can see
that the fitting of XGBoost with synthetic users did improve
considerably the capacity of the classifier to learn to classify the true
users as well.

This is a pretty good result. but we will continue to iterate on it during
the tuning phase.

Tuning

Fine-tuning of XGBoost

We are now ready to grid-search for the best hyperparameters possible
on this XGBoost model. But first, let’s update our Validation Curves to
narrow down the scope in which the grid-search will be performed.

Updated Validation Curve

(Note that after data processing, the general FBeta score skyrocketed
due to the presence of synthetic users, and the general validation curve
function from sklearn would not work very well.

Thus, we developed our own custom Validation Curve function is also
configured to output scores ignoring the synthetic users)
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o colsample_bytree gamma
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Although the scenario still looks hard to optimize, we can still do some
tuning. In our Grid Search, we will look for:

= max_depth: between 5 and 8.

= min_child_weights: between 7.5 and 10
= gamma: betweenOand 2

= colsample_bytree: between 0.2 and 0.9
= subsample: between 0.1 and 1

= reg_alpha: between 0.0 (no L1 regularization) and 2



= reg_lambda: between 0.0 (no L2 regularization) and 2.5
= learning_rate: between 0.01 and 0.15

= scale_pos_weight: between 1 and 3

= max_delta_step: between 0.5 and 2

= colsample_bylevel: between 0.1 and 1.0

= n_estimators: between 10 and 200

Grid-Search

In our grid search, we will evaluate results based on both the FBeta
scores in both the Training and Validation sets. We want to maximize
both, but we don't want to get trapped overfitting in the Training, so the
distance between these two scores should also be minimized.

Hence, we will use this meta-score as evaluation metric of grid-
search outputs to which hyperparameter combination is best:

beta'frai-ning X fbetayatidation
\/.fbem-f-rm'n:in,g — fbetayatidation

Also, as before, we need to remove synthetic users from the scoring
evaluation. These two things are possible by modifying our own grid-
search function, instead of using the one from sklearn.

Results

Here’s the best tuning found by this grid-search:

== Grid Search best results: ==

Training: 8.7423225544, Validation: ©.6848731752
Parameters:

- subsample = 1.8

- colsample bytrees = 8.99

- gamma = 8.8

- min_child_weight = 8.8

- max_depth = 7

...leaving the remaining hyperparameters as default values. With this
profile, we fit again the XGBoost model for these results:

Scores in Training Scores in Validation

Recall: 0.73 Recall: 0.68
Precision- 0.96 Precision: 0.28
FBeta: 0.75 FBeta: 0.60
Regular Regular
3 3
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Pretty good! Recall reduced a bit, but we had a larger increase on
Precision, and overall the model is working quite well. In the Validation
set, we are able to predict 68% of all users with potential of becoming
Paying Users, with a 28% chance of a good lead for all players marked as
candidates.

Not only that, but this pool of false positives in Validation may actually
be a bonus as, with them, we can actually increase the conversion
rate of the game. With a focused direct marketing, offers of great value,
exclusive content and pre-emptive customer support on players our
algorithm learned are showing signs very similar of future Paying Users,
it is not unreasonable to think we can turn at least 1/4 of those false
positives in new Paying Users!

Final Tests
Predicting in Test Sets

The final tests of the algorithm will be done with the 2 Test samples we
constructed in the beginning:

1. The small test set with 50%/50% Paying Users and regular users,
with 200 users total;

2. The large test set with a "natural" distribution where Paying
Users are 0.2% of the population, with nearly 20k users total.

Thus, the final results!

Test Scores, "Even Split”

Test Scores, "Natural Split”

Recall: 0.60 Recall: 0.69
Precision: 0.95 Precision: 0.07
FBeta: 0.62 FBeta: 0.37
Regular Regular
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E] ]
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Paying User Paying User
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Predicted label Predicted label
Conclusions

While far from perfect, the final Tests were still interesting: we were able
to identify more than half of the Paying Users in the "even split" sample,
with only 3 false positives, and 69% of Paying Users in the "natural split".

The main problem is that, in the later, we had a very high ratio of false
positives. While some of them can be converted to Paying Users with
better and more focused incentives, this is a problem because this Test
set is the one closest to real-life operations.

Hence, such a low Precision might make the model non-viable for
Production, in its current state. It could, in fact, still be operated, but we
would need to scale down the costs-per-user of our direct marketing
actions by simply creating a cluster with these Positives that will receive
better "Starter Pack" and "Beginners Pack" kind of offers. More
personalized one-to-one contact from an outbound team would be
probably too expensive for this kind of accuracy.

Further Improvements

Upgrading the model in future versions

This model can still be improved a lot in future versions. We can already
identify a few ways how this pipeline could be upgraded in future
versions:

1. More Extraneous Information

Extraneous information is, in this case, information outside the
context of the gameplay and game mechanics. Among the features
selected by the RFE we can already the information of which Device and
which operation system the player uses makes a difference.

This is a strong indication that we should add to the model not only
demographics such as age, gender, geolocation, etc.

So, while our initial modeling focused on what players are doing inside the
game, a second version of the model should account more for who
players are and what they do outside the game.



Apps Used

One of the possibilities the company can immediately start to explore is
to add to learning which other Mobile Apps the users have installed in
the same device, besides our game. This information is already available
in the original database of this game.

The issue with this approach is that, because there are so many different
apps in the world, if we try to one-hot encode the label of these apps,
we can end up with literally over 100,000 new dimensions in the
dataset!

To work around this problem we could, instead of one-hot encoding
every single individual app, we can use Latent Dirichlet Allocation
(LDA) Topic Modelling, a technique common for text documents. We
would treat the collection of apps' names of each user as a "document”,
and use LDA Topic Modelling to create 10 or so probabilistic categories

Topic proportions and
Topics Documents as ts

3 Seeking Life's Bare (Genetic) Necessities

LARaon, New Yows

that we would add to the dataset for the learning algorithm to use.

Demography Info

Another possibility is to use demographics. The company has some of
this information, but it could not be disclosed for this work due to the
privacy policy with their users. The data scientists internally could add
this information, and it would go a long way towards improving
accuracy.

2. Observation Weighting with Age

The goal is to weight every single new user according to some constant
criteria, so users would "worth more or less" for the learner to use in the
learning process. In this case, the idea to use the age in the game: the
difference in days between today and the date a user first installed the
game.

The idea is that a Live game is a fluid thing. It evolves and changes - for

example, as certain Clans become more or less powerful, as new users
join and old users retire, and - above all - as users buy new devices and
as the competition in the market changes over time.

Our selected features are already pointing this is a direction worth
exploring. The selected features with the suffix
"joined_after_trackers" are temporal ones, indicating when an user
joined the game after a certain feature started to be tracked at all across
the many minor updates of version 4. The fact those feature swere
chosen is a strong indication that the game became better at
converting users over time, and it makes a lot of sense to factor this in
the model.

3.Label Propagation / Spreading

This is a social game. Not only all progression systems are based on
player vs. player, adversarial gameplay, but players also congregate in
clans in order to beat other clans. And in clan-based strategy games, it is
well-known in the mobile games industry the tendency of come of these
games to stimulate "social spending” - features that enable certain
"major" players to stimulate the rest of the Clan to purchase additional

resources, and to continue to purchase again and again as new Clan
Wars come buy.
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Thus, it's possible we could use Label Propagation or Lable Spreading
techniques to add information about potential Paying Users to the
model. By wrangling other types of social interaction data from the
original database into a "learnable" format like player_data.csv, we
could train a separate Label Spreading and add the class labeling as
an extra feature of our model.

4. Ensemble

XGBoost is already an ensemble algorithm. Akin to a Random Forest, it
trains lots of "weak" Decision Trees, then combining the results with
boosting.

However, it is feasible different approaches to machine learning could
yield different results in terms of classification of who will be a Paying
User. A Neural Network or even a Logistic Regression can have different
decision boundaries. It is feasible classification could improve by
ensembling these algorithms together into a higher-level meta-learner,
together with XGBoost.

It's also possible XGBoost itself could be configured in a very different
manner, because the algorithm has a fairly big amount of
hyperparameters and "ways to do things", thus being ensembled with
our main model in this project.

5.Less than 3 Days

Once the model improves on its scores on the test sets, we could
attempt to reduce the amount of days since the app install that we are
using as a threshold to accumulate data and feed the learner.

Ideally, we would be able to reduce this number all the way to 16 hours
or less. The sooner we can identify these users, the faster Live Ops teams
can act. The ability to identify a list of potential users overnight could
significantly improve the ratio of daily conversions and first purchases in
the game.

6. Online Learning

Finally, a crucial development to make this model available for
Production would be to transform it into an online learner, gradually
improving predictions as new users come by and behaviors change over
time (which would make the Observation Weighting with Age even
more important).

Fortunately, XGBoost is capable of partial fits, and very much
compatible with online learning.



team wondering what features to develop, what power-ups to give,
what offers to make, to which users.

As the free-to-play model continues to dominate the mobile app stores,
Final Words the consolidation of the market around fewer and fewer games is
forcing companies to think out of the box and look for solutions.

While still not perfect, this model can be the beginning of a very Thanks for reading!
interesting new Business Intelligence service for Live Ops teams trying
to improve their revenue per user in free-to-play games.

- Tiago

The ability to predict which users have potential to become Paying
Users can make a huge difference in the bottom line of a development

Appendix for “Predicting Paying Users in a Free-to-Play Game”

“Tech trees” from the free-to-play game Newerth:

= Requires Parent
Requires fire Shrine
— Requires Strata SI

The Legion of Man
(Humans)




Fan-made table of costs of resources and time to build in Clash of Clans

Resource 1 2 3 q 5 5 7 8 3 10 1 1z
Town Hall Giold = T 150,000 2days
Clan Castle Gold 0 A Il 0 1day 5,
Laboratory Elisir 5
Spell Factoi Elizir 00,000 4
Dark Spell Factor Elizir 0
Barbarian King Dark Elisir
Archer Queen Dtk Elizir 0
Grand Warden Elizir 0,000 0 3 y 0 15 0 0 +500,0001.5 L
Troops
Barbarian Elizir - 4 & 150,000 1day
Archer Elizir = 250,000 2 days
Giant Elizir 0,
Goblin Elisir
Wall Breaker Elizir
Balloon Elisir
Wizard Elizir
Healer Elisir
Dragon Elisir
Elizir
Dtk Eliir
Doark Elizir
Walkyri Dark Eligir
Golem Doark Elizir
Witch Dark Eliir
Lava Hound Dark Elizir
Elizir - 1,000,000
Elisir _ 4
Elizir
Elizir
Elisir
Poison Doark Elizir
Earthquake Dark Eligir
Haste Dark Eligir
Elizir
Gold Mine Elisir
Gold Elizir
Gold Mine Elisir 5
Gold Elizir 5 2Zhr
Gold Mine Elizir 0 Si 00
Gold Mine Elisir
Gold Starage Elisir
Gold Storage Elisir
Gold Starage Elisir
Gold Storage Elisir
Giold
Gold
Giold
Gold 0 5i 0o
Giold 5 2Zhr
Gold 0
Gold 5 " "
Gold h 0 6,0 hi Ehi 100,000 12he
Giold 100,000 12ht
Giold

Scatter Matrices

Initial scatter matrix on player data (features selected in the text).
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Log-transformed matrix for Regular Users:
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FBeta demonstration

Equilibrium Skewed to Recall
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