
How Machine Learning Can 
Help Game Design

Tiago Tex Pine
2024



This Presentation

• How game data is usually tracker and shaped.
• Extremely brief introduction of ML (for game makers)
• How to apply Regression, Classification, Clustering, Dimensionality 

Reduction and LDA for game design.
• Reinforcement Learning for NPCs, economy simulation, game QA - 

and its many application challenges.
• LLM for NPC dialogue? Nowhere near as easy as it looks.

What we won’t cover: Gen AI in game art or code. No product pitch.



About Me: 
● Product Owner: a mix of team leader, game designer and producer.

● Developing video games since 2005. Data scientist between 2017 and 2023.

● Worked on various components of game development across the 

years: engineering, UX, game design, business development, 

market research, economy, monetization, data science and team leadership.

● 30+ games, across various companies, genres, platforms, business models and team sizes - from 4 to 400 

developers.

● Enthusiastic about combining the art of game design with the science of data.

● I also run lots of tabletop RPGs and Dungeons & Dragons in my spare time. :)

● I joined Prodigy to create games that improve people's lives.



How is the Data of Game Activity 
Common traits in any database tracking player activity.



Creation of data is “under control”
• The way the data is created is under control of game 

developers.

• Like a software or website, game programmers and data 
analysts can decide exactly what to track, in what format, in 
what moment of the flow of the code.

• Metadata is under control. Very little manual input from 
users (except voice and text chats).

• Few sources or only one source of data: 
• The game itself, 95% of all data;

• Player Activities;
• Server health monitoring;

• Payment solution;
• First-party auth (Google Play, iTunes, Steam, Epic);
• Sometimes a CRM solution with emails, but it’s actually rare.

• Because of the items above, Game Data is usually not very 
dirty - or, at least, much less compared to other businesses. 

{
session_id: "e7925afa-d0fc-481a-9743-

ecaa413da8c9",
player_id: "e548af35-7cb6-4875-a205-

f01adc9a9715",
trigger_id: "75da07ac-5918-4f5e-93ec-

fde79139bea2",
event_name: "equip_weapon",
event_id: 32,
weapon_type: 2, # sword
weapon_material: 8, # adamantine
weapon_visuals: 3, # camouflage
weapon_affixes: [

{affix_name: "Slaying", 
affix_mod: 0.2},

{affix_name: "of Guidance", 
affix_mod: 0.3, affix_mod2: 0.1}

]
}



User-level and Anonymous

• The raw, underlying data is on a user level, 
with each user choice and click over time.

• But almost always, game developers do not 
know demographic information of these users.

• We don’t know age, gender, location, income, 
nothing like that.

• Two reasons: 
• Companies that can have them are worried 

about PII and don’t link account data to player 
IDs;

• Companies that cannot have them are the 
majority!

Player’s Timeline of Activity

Snapshot after 20 sessions



Non-normal distributions

• Non-normal distributions are common.
• Long-tails, Logarithmic and Log-normals

• Particularly when it comes to revenue, 
game progression and activites over time, 
players are not equal.

• In free-to-play games: ~20% of the entire 
user base is most of your business.

• 5% will ever convert;
• Half your total revenue depends on 0.5%;

• We need to be very careful on using math 
that assumes data is normally distributed, 
such as student’s t-tests for AB tests.



Multicollinearity and Confounding

• Dimensions of player progression data can frequently have high 
but imperfect degress of collinearity.

• For some few features, it may actually be a perfect collinearity.
• Every analysis and ML need to tune, or at least consider, that 

multiple dimensions may go hand in hand to each other -  and 
sometimes confounded in a same “invisible” game mechanics.

• Examples of collinearity: 
• amount of HP vs. character level;
• enemy level vs. campaign stage;
• soft currency vs. playtime.

• Examples of confounded features: 
• character level vs. enemy level in an open world game that doesn’t 

auto-scale difficulty;
• ladder/arena tier vs. usage of a specific hero
• progress in a Battle Pass vs. popularity of fire spells



Experience across player journey

• Every good game has a dynamic progression.
• What may be good in session 5, may not good in session 30.
• Player become more powerful, more skillful, economy changes. 
• Context matters a lot - and context is either tracked or designed.



Averages will lie

• Relying only on Averages might 
make you miss have different 
populations among your 
players.

• Thus, miss design and business 
opportunities.

• Do data exploration and 
scatter matrices when dealing 
with multiple dimensions.

10.68
Average Level:

Ø Averages would tell us Fire Heroes are 
more used around Level 10.

Ø But in fact, there’s a problem where they 
are less used at this point.



Business KPIs don’t really help game designers

• Things like ARPU, Conversion, ARPPU, and even 
Retention are good to know, generally.

• But for designers, they are not real insights. They are 
“trivia data”.

• If a designer during Live Ops is like a doctor trying to 
diagnose a patient:

• Those KPIs are like thermometers. 
• But what doctors really like is to have blood tests and 

radiographies.

Conversion

ARPU
K-factor

DAU
ARPDAU

CPI

ARPPU

LTV
Retention



Ø Retention points 
to a problem in 
day 3. But why?

Ø Player Level tends to 
be 4-6 at day 3. 

Ø What are they doing 
to drop?

Ø The win ratio of map 
level 5 is very low.

Ø We found a real 
insight that can help 
re-balancing.



Premises of ML for game design
Super brief, for game developers



Needs lots of players 
(for the most part)

• Machine Learning = Statistical Learning. 
• Hopefully enough to split your data in 3 

subsets (70%/15%/15%) and still have > 
3,000 data points (table rows) in the 
smaller ones.

• Those are sets to, respectively, train, test and 
validate.

• Anything below 50 users is unusable.
• Data generated by developers, company 

workers and QAs are NOT good enough and 
should be considered extremely biased.

*source: Tarang Shah

*source: Alice Zheng



• Thus, ML mostly can’t be used in 
early stages of development of a 
new game, where the only real 
player data is coming from 
playtests.

• No, can’t use the data from another 
game - usually they don’t exist 
anyway.

• Data from another game will be 
biased to that game’s mechanics 
and dynamics (metagame)

• Exception: some applications of 
Reinforcement Learning.

• However, once beta / pre-launch / 
soft-launch / live ops begin, then 
we can start unlocking ML.

Pre-
Production Prototyping Vertical Slice

AlphaBetaSoft-Launch / 
Early Access

World 
Launch Data Analysis

Pre-Production 

Production / 
Development

AB tests / Early 
Access / PTR

World Launch 
of Update

Live Ops Cycles

Playtests / Focus groups



Must use the output as a generalization.
• The best ML models are the ones that are 

capable of generalizing. They are neither 
trying ot be 100% precise nor too broad. 

• Bias vs. Variance tradeoff
• Overfitting vs. Underfitting

• When properly tuned, they provide 
generalizations that are more robust statistics 
than Averages.

• KPIs based on Averages are common and easy to 
explain 

• But dangerous simplifications.
• "When Bill Gates enter in a bar..."



• Playtests and focus groups are qualitative data - also very important, but not usable in ML. 
• Game designers are used to this kind of data, from playtests during development.

• Models of statistical learning that make good generalizations will eventually misclassify very 
particular cases that not represented enough in the training data. 

"Machine Learning models are 
statistically impressive, but individually 
unreliable." 

- John Launchbury, the Director of 
DARPA's Information Innovation Office

*source: DARPA

Do not look too much into specific users.



ML to understand player behavior
Decomposing multi-dimensional spaces into actionable directions.



Regression
• Algorithms that try to predict a value 

based on a variable + historical data. The 
most common ones fit a line across 2 or 
more dimensions.

• "Least Squares" regression is the simplest 
one, but only effective when the data is 
relatively linear. 

• Non-linear regressions are possible if your 
data "looks" like it could be fit in another 
function, such as polynomial or 
logarithmical.

• But requires plotting of the 
distribution and careful study first.

*source: Björn Hartmann

*source: Alboukadel Kassambara



• But generally, gameplay data is 
much more messy and it's 
usually more efficient to regress 
on non-parametric models.

• The game, metagame and player 
habits are changing over time 
and "disturbing" the curves.

• More efficient models to help 
game design are non-parametric, 
such as Isotonic and Gaussian 
Kernel regressions.

*source: Wikipedia

*source: Chris McCormick



• It's also useful to project variability bounds, or confidence intervals, in 
the predictions. So the expected variance is well known by designers.

• Example: "We expect players that play 10 hours to have earned 2554 
bucks, varying between 4125 and 2145."

*source: Wikipedia*source: MatLab



• Things get "interesting" when using multiple 
dimensions, which is common.

• But if too many dimensions are being used, the 
curse of dimensionality kicks in and it's 
probably better to regress with Deep Learning. 

• DL can also do multi-output regressions, which are 
useful for economy balancing.

*source: MatLab

Linear:

Gaussian Kernel:

*source: MatLab

When the dimensionality increases, the volume 
of the space increases so fast that the available 
data become sparse. In order to obtain a 
reliable result, the amount of data needed 
often grows exponentially with the 
dimensionality.



How Regression help Game Designers

Projection of expected values across 
many different aspects of the player 
progression:

• Resource accumulation per game 
milestone.

• Time to reach game milestones.
• Time to accumulate high level items.
• Resource inflation over time.
• Rates of Tutorial completion.
• Participation on events / game 

modes.
• Combat efficiency over time and 

over player levels (for example, on 
win ratios)

Also, Regression models could replace analysis based on averages, as it is 
more robust against outliers and can use optimization techniques like 
Gradient Descent. Example with a very simple model (least squares):



Classification

• The goal of these models is to 
classify a data point into 
categories (or labels). 

• The models work by discovering criteria 
that can somehow separate data points in 
a multi-dimensional space.

• Ideally, the best models are capable of 
creating complex boundaries to 
differentiate between several classes.

• Classification models are a very useful 
bunch, wildly used in the most famous 
applications of Machine Learning across 
many industries.

*source: Fimarkets

*source: Hyunjik Kim



• Depending on the classification algorithm, boundaries between classes can be of 
straight lines (hyperplanes, actually), smooth curves, rules-based lines, uncertain 
classification in lower probability zones, and anything in-between.

*source: Scikit-Learn



Classification models for game data 
must consider the density of the 
player population as they progress 
through the user journey.

Gaussian Naive Bayes
Learns the probability of a 
classification based on Bayes. 
Very fast to train and 
experiment with. May work 
well on relatively less training 
data. Mid to late game has less 
players.

Logistic Regression
Assumes data to be highly 
correlated an linearly separable. 
Works best for few categories. 
Very fast to train and 
experiment with. Early game 
data has potentially less 
dimensions to train in. Support Vector Machines

Learns by trying to find boundaries that 
maximize the spatial distance from data 
points. Slow to train and should only be 
used when you don't have too much data 
(less than 100 k data points). Late and end 
game has much less players, 1% to 5%

*source: Ganapathi Pulipaka

*source: mlxtend

*source: Karim O. Elish

Early Game Mid Game Late Game End Game

*source: William 
Koehrsen, 

Manish Pathak 

Decision Trees, Random Forests, “Boosted Forests” 
(XGBoost/AdaBoost/MART)
Learns by finding rules in the data that stablish a if->else 
branching trees that classifies a data point based on its 
features. We can use Entropy to approximate the 
importance of features by information gain. “Boosted 
forests” can be more powerful but harder to tune.

They “think” a lot like game designers but can go much 
deeper in sequences of conditions. May “just work”.



Useful to predict how a player will behave in the future based 
on behavior of other players in the past. 

How Classification help Game Designers

Level 3

Previous 
Users

Level 4 Level 5

New User

Buys a new 
Sedan car

Upgrades the
car with Nitro

Wins the last race 
in the first try.

Buys a new 
Sedan car

New "High 
Achiever" 

Classifier trained 
from the past of 

this outcome

Predicted as a future 
High Achiever

Once the classifier is trained and tuned, 
it outputs a list of the most relevant 
and correlated mechanics in the game 
that designers can adjust.

Something like:

New User
Upgrades with 

new Tires
Predicted as 

"Average Achiever"

FindsFinds



With the proper backend implemented, the classifier can be 
implemented as a real-time system to deliver custom content like 
gifts and in-game events.

How Classification help Live Ops

Certain types of classifications 
are particularly useful:

• Players who will churn.
• Players who will convert.
• Players who will participate 

in an upcoming event.
• Players who will play a game 

mode unlocked later in the 
game.

• Players who will engage in 
social modes like Guilds.

Special Offer of a new Car

Unique Race now available

Share Free Fuel for 1 Day



• The goal is to autonomously find 
clusters of data points based on its 
spatial proximity or feature similarity.

• Because they can "discover clusters 
by their own", they are Unsupervised 
Learning.

• Discovering clusters algorithmically 
eliminate the reliance on biased 
human judgement that may not be 
supported by  data (like the BARTLE 
taxonomy)

Clustering

*source: Inna Kaler

*source: Sowmya Vivek

...but...



• Different algorithms employ different strategies to determine what is a "close 
point" in multidimensional space. The problem is harder than it seems in real-
world messy datasets.

*source: Scikit-Learn



Game data usually has a sizeable dimensionality after the data is engineered for a 
ML algorithm. (100+ features, even thousands)



Dimensionality may render Euclidean-based aproaches less and less useful.

*source: Mubaris NK

k-Means
The most used. Fast and scalable. Creates 
clusters with distance of data points, moving 
the centroid until convergence. Needs to be 
told the number of clusters - which could be 
too arbitrary and needs the "elbow rule". 

Data within a narrow progression bracket of 
the game (example: XP levels 10 to 15) may 
work as they are closer to hyperspheres, but 
game-wide, k-means clustering can suffer 
from miscrassification of behaviors.

HDBSCAN
Density-based search of clusters, works by finding 
points that are close to a random non-visited 
starting point, and continuing to include other close 
points. Works great but is resource-intensive and 
vulnerable to clusters of different densities.

Produces good results but is difficult to 
productionalize due to resource utgilization. Better 
for ad-hocs.

*source: George Seif

SUBCLU
An implementaion of DBSCAN for high dimensional 
spaces, which uses sub-space clustering to reduce 
the issues of the curse of dimensionality with 
Euclidean distances. Subspace clustering without 
assumig all of the clusters in a dataset are found in 
the same set of dimensions.

Lack of implementation in the most-known ML 
packages like SkLearn.



• Clustering is useful to find groups of players 
from their behavior in the game. Frameworks 
of psychology like the Bartle Types are useful 
for conception of features, but once you 
launch data science can provide you how your 
players really behave.

How Clustering help Game Designers

Development

Updates

*source: Anders Drachen, Rafet Sifa, Christian Bauckhage and Christian Thurau

Study made on 
the MMO game 

Tera.



Dimensionality Reduction

• A group of algorithms that can 
decompose multiple dimensions of data 
into fewer ones. 

• The decomposed dimensions represent  
"parts" of data that were highly aligned 
with each other. 

• The mathematical description of these 
new dimensions may seem clunky, but 
are interpretable by a data analyst.

• Very useful for metagame analysis.

*source: BigSnarf blog



• The most used method is the Principal Component Analysis (PCA). 
• It works by finding new coordinate systems in the data that can potentially 

describe latent features, and then projecting 2 or more dimensions into a single 
one, losing information in the process. 

• For example:

*source: Udacity

Result in 1 
dimension.

We want to find 
this latent feature 

hidden in 2 
dimensions.



• Also great to visualize multi-dimensional spaces in 
ways anyone can understand.

• Example: here's an analysis made by Jose A. Dianes 
on cases of Tuberculosis across 2 decades and all 
countries:

Compressing all years to 2 
Principal Components

Plotting and 
Clustering

Analysis of what the 
clusters represent.

https://github.com/jadianes/data-science-your-way/tree/master/03-dimensionality-reduction-and-clustering


z

• Like in the example before, where 
the clusters captured the trend over 
time for several countries at once, 
PCAs can be used to find latent 
information and trends in your data

• Here's an example decomposing 34 
stats of soccer players in 2018 into 
only 2 dimensions, made by Kan 
Nishida

How PCAs help 
Game Designers

Insights

These axes project 
the original stats in 

this new space.

1. The dimension PC2 is 
strongly associated to 
stats that help Defense, 
like Marking, 
Interception, Strength, 
Aggregation.

2. Mid Fields cluster more 
towards:
• Short Pass
• Stamina
• Crossing
• Free Kick Accuracy
• Vision
• Shot Power

3. Forward players share much 
of the same skill space in PC1 
with Mid Fielders, but cluster 
more towards:
• Agility
• Acceleration
• Spring Speed
• Finishing.

https://blog.exploratory.io/an-introduction-to-principal-component-analysis-pca-with-2018-world-soccer-players-data-810d84a14eab


... and applying the 
model to compare 

only Brazil and Japan.



... and applying the 
model to compare 

only Brazil and Japan.

Neymar



... and applying the 
model to compare 

only Brazil and Japan.

Neymar



Latent Dirichlet Allocation (LDA)

• A semi-supervised learning 
algorithm, used to predict 
topics and classify data points 
based on the repetition of a 
certain content across those 
data points.

• It's a "soft" classification 
method, in the sense that a 
single document can belong to 
2 or more topic.

• Hard to train and tune, but can 
be work for analysis of multi-
dimensional strategies.

*source: BigSnarf blog



• LDA Topic Modelling is used to discover broader topics of documents of any type, 
(include scientific data, like genetic measurements) and relationships between 
such topics.

• But was also used for content recommendation and analysis of overlapping 
communities in social networks.

*source: Alexis Perrier

LDA on Twitter messages 

*source: Debbie Liske



• By revealing and structuring metagame patterns and strategies that players are using.
• Here's an analysis from Hlynur Davíð Hlynsson using LDA to discover and relate deck 

strategies in Magic: The Gathering.

How LDA Topic Modelling help Game Designers

The model discover 
Archetypes of decks and 

the probability that a 
certain card will be 

present in each deck 
Archetype.

Since LDA is a generative 
model, we can also make 

this model create new 
decks!

https://towardsdatascience.com/finding-magic-the-gathering-archetypes-with-latent-dirichlet-allocation-729112d324a6


Reinforcement Learning
RL, Deep RL, and Deep Q-Networks can help gamedev.



Deep Learning

• A class of ML models composed of 
stacked Neural Networks. 

• Very flexible and very powerful, and 
continue to improve over time as the 
amount of data increases. 

• But costly: hard to tune, time-consuming, 
require GPUs, take a lot of processing 
time to train. 

• Also, nearly impossible to know why and 
how a deep learning model makes 
decisions.

*source: Andew Ng

*source: Favio Vázquez



• First, lets understand what a Neural Network does. It's an architecture 
(usually used as a Classifier) that combines the separation made by 
various "neurons".

A "neuron" (Perceptron)

Training 
Data

*source: Udacity

Trained to 
distinguish the blue  

category with a 
linear function.

Receives 
coordinates of a 
new data point.

Outputs the 
probability that 
point belongs to 

the blue category.

*source: Udacity



• However, in the real world, very few datasets 
are separable by one line. So then, like in the 
example below, we create a network of 2 
neurons to create a more complex boundary.

*source: Udacity

*source: Udacity

Neuron 1 thinks the 
point has a 70% 

probability of being 
blue.

Neuron 2 thinks the 
point has a 80% 

probability of being 
blue.

Sums the output of 
the two neurons. Math using a 

Sigmoid function to 
derive a combined 
probability of 82%.

A Neural Network



• Finally, for really complicated classifications, we can stack more 
layers of neurons that together create a very sophisticated classifier. 
The non-linear model of a layer is further expanded into more 
complex non-linear boundaries. That's a deep neural network.

*source: Udacity



• The ability to stack more layers and experiment with 
different architectures when connecting neurons is 
what makes deep neural networks so flexible. And it 
can become really sophisticated.

• For example, Google's Inception models:

*source: Google

*source: MathWorks

*source:William Koehrsen



Learning by Trial and Error
• Reinforcement Learning is the one type of Machine 

Learning that, in principle, doesn't require loads of 
data, but... doesn't do the same things either. :)

• The goal of Reinforcement models is to learn how to 
execute tasks from scratch, with minimal human 
intervention.

• It's a model based on Markov Decision Processes that 
learns on trial-and-error across thousands (millions?) 
of attempts, being guided by reward functions across 
many tries.

• RL agents that learn to play games by themselves. A 
team of Mnih et al. 2015 trained agents in several 
different Atari games, frequently achieving super-
human performance.

*source: Shweta Bhatt



• But playing simple mechanics is not good enough.
• Most modern game have some level of RPG and 

Strategy, two genres of video games particularly 
challenging for RL:

• High-dimensional state space;
• Resource management with cascading consequences;
• Control of many simultaneous features or units;
• Planning long-term progression and “end-game”;
• Time-locked features in free-to-play games;
• Shifting metagame as games update often via Live Ops.

• Multi-agent RL (MARL), Hierarchical RL (HRL), Deep 
LTSM and proximal policy optimization (PPO) have 
been applied for more efficient learning od sub-
tasks and long-term planning.

• OpenAI Five mastered Dota 2. 
• AlphaStar mastered Starcraft 2.

https://deepmind.google/discover/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii/


RL in the real world of game development

• Low application or RL in game development: 
• Deep Learning is very costly, both in terms of compute and data science talent. 
• On the talent front, the games industry has to compete with much higher-paying industries 

like Finance!

• Hard to tune. Game development requires a level of control in every feature.
• Reserchers of Deep RL are not usually trying to solve the industries’ problems for 

developers, just to benchmark their creation against the human skills of players.
• OpenAI Five and AlphaStar are impressive but useless for game developers.

• But can their science be used in tools to create and balance new games? 
• Games in development without any players?
• Games with long-term economies that scales into years of gameplay?



Reinforcement learning models open a world of 
possibilities in conjunction with Deep Neural Networks:
 
• Enemy AI that is trained instead of coded. 
• QA bots that play the engine 24/7 and help test the 

work of developers and document bugs.
• Play the metagame and test long-term progression 

design and economy, help balance the game 
economy and progression. Predict resource inflation.

• Narrative agents without pre-scripted dialogues, that 
react to the player's choices more organically.

• Matchmaking for PvP games.

How Reinforcement Learning
help Game Designers

*source: Unity

*source: Unity



RL for Enemy AI
• Unity 3D made a concerned effort to enable RL for game 

developers.
• Common example: enemies in an FPS (first person shooter)
• Some developers used it. Most ditched it. 

• Because it’s very hard to tune 
• Requires a lot of time to get right.

• Didn’t really help to design a game that is more fun
• The AI is not there to win.

• The reward functions for the RL training must factor more subjective 
requirements into their math: is the player engaged and entertained?

• Is the player happy? Game designer must test with players and be able 
to tune parameters.

• Can it be used? Yes. 
• Does it make game development easier or more efficient? No.



RL for QA
• Professional QA have to play the game over and over 

again, press the same button litteray hundreds of time per 
day.

• Can a RL model be created to test games and code in 
development and find bugs?

• Find glitches;
• Corner cases and soft-locks;
• Character gets stuck;
• Crashes.

• Each type and sub-type of issue can demand a very 
different RL training and reward functions.

• How can it document what it “sees” in the screen? 
• It needs to be able to describe reproduction steps.

• The AI is not there to win.
• Reward functions and math should reward finding issues.



RL for Economy and Balancing
• Games are systems of loops that repeat on top of 

each other.
• Loops often involve the exchange of resources and 

currencies.

• Lots of modern games have long-term progression 
and permanent states of an account (“save-
games”).

• Economic systems can be expressed as constructs 
that don’t necessarily need the AI to play the “core 
game”, 

• This could accelerate training times enough that 
RL networks can be re-trained every time game 
designers are tuning economic values (example: 
“how much Unobtainium does it cost to craft a 
new artifact?”).



RL for NPC dialogues
• The main problem is one of immersion. A second main problem is 

of a legal and PR nature.

• NPCs have limited knowledge of the world. But each NPC should 
know a bit more or less.

• Does the peasant knows about Dyrax the Red Mage in the crystal 
tower? He knows the place is scary and people who goes there die.

• Does the travelling merchant knows about Dyrax the Red Mage? 
She knows the mage is known to buy black root and spices.

• Does the mayor knows about Dyrax the Red Mage in the crystal 
tower? He in fact has a corrupt deal with the mage to not investigate 
his crimes, and will lie. 

• NPCs must never break character.  It’s easy to “game” current LLMs

• PR nightmare: game companies don’t have nearly enough 
resources like Bug Tech to test for edge cases of bad speech.

• Can it be done? Yes, but don’t underestimate the “uncanny 
valley”.



Thank you! 
Questions?

tex@texpine.com
texpine.com

Start here!
http://www.r2d3.us/

https://www.texpine.com/
https://www.linkedin.com/in/texpine/
http://www.r2d3.us/


Appendix
• Icon Game by Orin zuu from the Noun Project

• Icon Lighthouse by Nikita Kozin from the Noun Project

• Icon User by Gagana from the Noun Project

• Icon Car on Sale from all-free-download.com / BSGStudio

• Icon Flag from all-free-download.com / Vector Graphics

• Icon Flag from all-free-download.com / BSGStudio

• All materials sourced on Udacity are subject of Creative Commons Attribution-NonCommercial- NoDerivs 3.0 License, located at 
http://creativecommons.org/licenses/by-nc-nd/4.0  

http://creativecommons.org/licenses/by-nc-nd/4.0

