
How Machine Learning Can
Help Game Design

Tiago Tex Pine
2024

This Presentation

• How game data is usually tracker and shaped.
• Extremely brief introduction of ML (for game makers)
• How to apply Regression, Classification, Clustering, Dimensionality

Reduction and LDA for game design.
• Reinforcement Learning for NPCs, economy simulation, game QA -

and its many application challenges.
• LLM for NPC dialogue? Nowhere near as easy as it looks.

What we won’t cover: Gen AI in game art or code. No product pitch.

About Me:
● Product Owner: a mix of team leader, game designer and producer.

● Developing video games since 2005. Data scientist between 2017 and 2023.

● Worked on various components of game development across the

years: engineering, UX, game design, business development,

market research, economy, monetization, data science and team leadership.

● 30+ games, across various companies, genres, platforms, business models and team sizes - from 4 to 400

developers.

● Enthusiastic about combining the art of game design with the science of data.

● I also run lots of tabletop RPGs and Dungeons & Dragons in my spare time. :)

● I joined Prodigy to create games that improve people's lives.

How is the Data of Game Activity
Common traits in any database tracking player activity.

Creation of data is “under control”
• The way the data is created is under control of game

developers.

• Like a software or website, game programmers and data
analysts can decide exactly what to track, in what format, in
what moment of the flow of the code.

• Metadata is under control. Very little manual input from
users (except voice and text chats).

• Few sources or only one source of data:
• The game itself, 95% of all data;

• Player Activities;
• Server health monitoring;

• Payment solution;
• First-party auth (Google Play, iTunes, Steam, Epic);
• Sometimes a CRM solution with emails, but it’s actually rare.

• Because of the items above, Game Data is usually not very
dirty - or, at least, much less compared to other businesses.

{
session_id: "e7925afa-d0fc-481a-9743-

ecaa413da8c9",
player_id: "e548af35-7cb6-4875-a205-

f01adc9a9715",
trigger_id: "75da07ac-5918-4f5e-93ec-

fde79139bea2",
event_name: "equip_weapon",
event_id: 32,
weapon_type: 2, # sword
weapon_material: 8, # adamantine
weapon_visuals: 3, # camouflage
weapon_affixes: [

{affix_name: "Slaying",
affix_mod: 0.2},

{affix_name: "of Guidance",
affix_mod: 0.3, affix_mod2: 0.1}

]
}

User-level and Anonymous

• The raw, underlying data is on a user level,
with each user choice and click over time.

• But almost always, game developers do not
know demographic information of these users.

• We don’t know age, gender, location, income,
nothing like that.

• Two reasons:
• Companies that can have them are worried

about PII and don’t link account data to player
IDs;

• Companies that cannot have them are the
majority!

Player’s Timeline of Activity

Snapshot after 20 sessions

Non-normal distributions

• Non-normal distributions are common.
• Long-tails, Logarithmic and Log-normals

• Particularly when it comes to revenue,
game progression and activites over time,
players are not equal.

• In free-to-play games: ~20% of the entire
user base is most of your business.

• 5% will ever convert;
• Half your total revenue depends on 0.5%;

• We need to be very careful on using math
that assumes data is normally distributed,
such as student’s t-tests for AB tests.

Multicollinearity and Confounding

• Dimensions of player progression data can frequently have high
but imperfect degress of collinearity.

• For some few features, it may actually be a perfect collinearity.
• Every analysis and ML need to tune, or at least consider, that

multiple dimensions may go hand in hand to each other - and
sometimes confounded in a same “invisible” game mechanics.

• Examples of collinearity:
• amount of HP vs. character level;
• enemy level vs. campaign stage;
• soft currency vs. playtime.

• Examples of confounded features:
• character level vs. enemy level in an open world game that doesn’t

auto-scale difficulty;
• ladder/arena tier vs. usage of a specific hero
• progress in a Battle Pass vs. popularity of fire spells

Experience across player journey

• Every good game has a dynamic progression.
• What may be good in session 5, may not good in session 30.
• Player become more powerful, more skillful, economy changes.
• Context matters a lot - and context is either tracked or designed.

Averages will lie

• Relying only on Averages might
make you miss have different
populations among your
players.

• Thus, miss design and business
opportunities.

• Do data exploration and
scatter matrices when dealing
with multiple dimensions.

10.68
Average Level:

Ø Averages would tell us Fire Heroes are
more used around Level 10.

Ø But in fact, there’s a problem where they
are less used at this point.

Business KPIs don’t really help game designers

• Things like ARPU, Conversion, ARPPU, and even
Retention are good to know, generally.

• But for designers, they are not real insights. They are
“trivia data”.

• If a designer during Live Ops is like a doctor trying to
diagnose a patient:

• Those KPIs are like thermometers.
• But what doctors really like is to have blood tests and

radiographies.

Conversion

ARPU
K-factor

DAU
ARPDAU

CPI

ARPPU

LTV
Retention

Ø Retention points
to a problem in
day 3. But why?

Ø Player Level tends to
be 4-6 at day 3.

Ø What are they doing
to drop?

Ø The win ratio of map
level 5 is very low.

Ø We found a real
insight that can help
re-balancing.

Premises of ML for game design
Super brief, for game developers

Needs lots of players
(for the most part)

• Machine Learning = Statistical Learning.
• Hopefully enough to split your data in 3

subsets (70%/15%/15%) and still have >
3,000 data points (table rows) in the
smaller ones.

• Those are sets to, respectively, train, test and
validate.

• Anything below 50 users is unusable.
• Data generated by developers, company

workers and QAs are NOT good enough and
should be considered extremely biased.

*source: Tarang Shah

*source: Alice Zheng

• Thus, ML mostly can’t be used in
early stages of development of a
new game, where the only real
player data is coming from
playtests.

• No, can’t use the data from another
game - usually they don’t exist
anyway.

• Data from another game will be
biased to that game’s mechanics
and dynamics (metagame)

• Exception: some applications of
Reinforcement Learning.

• However, once beta / pre-launch /
soft-launch / live ops begin, then
we can start unlocking ML.

Pre-
Production Prototyping Vertical Slice

AlphaBetaSoft-Launch /
Early Access

World
Launch Data Analysis

Pre-Production

Production /
Development

AB tests / Early
Access / PTR

World Launch
of Update

Live Ops Cycles

Playtests / Focus groups

Must use the output as a generalization.
• The best ML models are the ones that are

capable of generalizing. They are neither
trying ot be 100% precise nor too broad.

• Bias vs. Variance tradeoff
• Overfitting vs. Underfitting

• When properly tuned, they provide
generalizations that are more robust statistics
than Averages.

• KPIs based on Averages are common and easy to
explain

• But dangerous simplifications.
• "When Bill Gates enter in a bar..."

• Playtests and focus groups are qualitative data - also very important, but not usable in ML.
• Game designers are used to this kind of data, from playtests during development.

• Models of statistical learning that make good generalizations will eventually misclassify very
particular cases that not represented enough in the training data.

"Machine Learning models are
statistically impressive, but individually
unreliable."

- John Launchbury, the Director of
DARPA's Information Innovation Office

*source: DARPA

Do not look too much into specific users.

ML to understand player behavior
Decomposing multi-dimensional spaces into actionable directions.

Regression
• Algorithms that try to predict a value

based on a variable + historical data. The
most common ones fit a line across 2 or
more dimensions.

• "Least Squares" regression is the simplest
one, but only effective when the data is
relatively linear.

• Non-linear regressions are possible if your
data "looks" like it could be fit in another
function, such as polynomial or
logarithmical.

• But requires plotting of the
distribution and careful study first.

*source: Björn Hartmann

*source: Alboukadel Kassambara

• But generally, gameplay data is
much more messy and it's
usually more efficient to regress
on non-parametric models.

• The game, metagame and player
habits are changing over time
and "disturbing" the curves.

• More efficient models to help
game design are non-parametric,
such as Isotonic and Gaussian
Kernel regressions.

*source: Wikipedia

*source: Chris McCormick

• It's also useful to project variability bounds, or confidence intervals, in
the predictions. So the expected variance is well known by designers.

• Example: "We expect players that play 10 hours to have earned 2554
bucks, varying between 4125 and 2145."

*source: Wikipedia*source: MatLab

• Things get "interesting" when using multiple
dimensions, which is common.

• But if too many dimensions are being used, the
curse of dimensionality kicks in and it's
probably better to regress with Deep Learning.

• DL can also do multi-output regressions, which are
useful for economy balancing.

*source: MatLab

Linear:

Gaussian Kernel:

*source: MatLab

When the dimensionality increases, the volume
of the space increases so fast that the available
data become sparse. In order to obtain a
reliable result, the amount of data needed
often grows exponentially with the
dimensionality.

How Regression help Game Designers

Projection of expected values across
many different aspects of the player
progression:

• Resource accumulation per game
milestone.

• Time to reach game milestones.
• Time to accumulate high level items.
• Resource inflation over time.
• Rates of Tutorial completion.
• Participation on events / game

modes.
• Combat efficiency over time and

over player levels (for example, on
win ratios)

Also, Regression models could replace analysis based on averages, as it is
more robust against outliers and can use optimization techniques like
Gradient Descent. Example with a very simple model (least squares):

Classification

• The goal of these models is to
classify a data point into
categories (or labels).

• The models work by discovering criteria
that can somehow separate data points in
a multi-dimensional space.

• Ideally, the best models are capable of
creating complex boundaries to
differentiate between several classes.

• Classification models are a very useful
bunch, wildly used in the most famous
applications of Machine Learning across
many industries.

*source: Fimarkets

*source: Hyunjik Kim

• Depending on the classification algorithm, boundaries between classes can be of
straight lines (hyperplanes, actually), smooth curves, rules-based lines, uncertain
classification in lower probability zones, and anything in-between.

*source: Scikit-Learn

Classification models for game data
must consider the density of the
player population as they progress
through the user journey.

Gaussian Naive Bayes
Learns the probability of a
classification based on Bayes.
Very fast to train and
experiment with. May work
well on relatively less training
data. Mid to late game has less
players.

Logistic Regression
Assumes data to be highly
correlated an linearly separable.
Works best for few categories.
Very fast to train and
experiment with. Early game
data has potentially less
dimensions to train in. Support Vector Machines

Learns by trying to find boundaries that
maximize the spatial distance from data
points. Slow to train and should only be
used when you don't have too much data
(less than 100 k data points). Late and end
game has much less players, 1% to 5%

*source: Ganapathi Pulipaka

*source: mlxtend

*source: Karim O. Elish

Early Game Mid Game Late Game End Game

*source: William
Koehrsen,

Manish Pathak

Decision Trees, Random Forests, “Boosted Forests”
(XGBoost/AdaBoost/MART)
Learns by finding rules in the data that stablish a if->else
branching trees that classifies a data point based on its
features. We can use Entropy to approximate the
importance of features by information gain. “Boosted
forests” can be more powerful but harder to tune.

They “think” a lot like game designers but can go much
deeper in sequences of conditions. May “just work”.

Useful to predict how a player will behave in the future based
on behavior of other players in the past.

How Classification help Game Designers

Level 3

Previous
Users

Level 4 Level 5

New User

Buys a new
Sedan car

Upgrades the
car with Nitro

Wins the last race
in the first try.

Buys a new
Sedan car

New "High
Achiever"

Classifier trained
from the past of

this outcome

Predicted as a future
High Achiever

Once the classifier is trained and tuned,
it outputs a list of the most relevant
and correlated mechanics in the game
that designers can adjust.

Something like:

New User
Upgrades with

new Tires
Predicted as

"Average Achiever"

FindsFinds

With the proper backend implemented, the classifier can be
implemented as a real-time system to deliver custom content like
gifts and in-game events.

How Classification help Live Ops

Certain types of classifications
are particularly useful:

• Players who will churn.
• Players who will convert.
• Players who will participate

in an upcoming event.
• Players who will play a game

mode unlocked later in the
game.

• Players who will engage in
social modes like Guilds.

Special Offer of a new Car

Unique Race now available

Share Free Fuel for 1 Day

• The goal is to autonomously find
clusters of data points based on its
spatial proximity or feature similarity.

• Because they can "discover clusters
by their own", they are Unsupervised
Learning.

• Discovering clusters algorithmically
eliminate the reliance on biased
human judgement that may not be
supported by data (like the BARTLE
taxonomy)

Clustering

*source: Inna Kaler

*source: Sowmya Vivek

...but...

• Different algorithms employ different strategies to determine what is a "close
point" in multidimensional space. The problem is harder than it seems in real-
world messy datasets.

*source: Scikit-Learn

Game data usually has a sizeable dimensionality after the data is engineered for a
ML algorithm. (100+ features, even thousands)

Dimensionality may render Euclidean-based aproaches less and less useful.

*source: Mubaris NK

k-Means
The most used. Fast and scalable. Creates
clusters with distance of data points, moving
the centroid until convergence. Needs to be
told the number of clusters - which could be
too arbitrary and needs the "elbow rule".

Data within a narrow progression bracket of
the game (example: XP levels 10 to 15) may
work as they are closer to hyperspheres, but
game-wide, k-means clustering can suffer
from miscrassification of behaviors.

HDBSCAN
Density-based search of clusters, works by finding
points that are close to a random non-visited
starting point, and continuing to include other close
points. Works great but is resource-intensive and
vulnerable to clusters of different densities.

Produces good results but is difficult to
productionalize due to resource utgilization. Better
for ad-hocs.

*source: George Seif

SUBCLU
An implementaion of DBSCAN for high dimensional
spaces, which uses sub-space clustering to reduce
the issues of the curse of dimensionality with
Euclidean distances. Subspace clustering without
assumig all of the clusters in a dataset are found in
the same set of dimensions.

Lack of implementation in the most-known ML
packages like SkLearn.

• Clustering is useful to find groups of players
from their behavior in the game. Frameworks
of psychology like the Bartle Types are useful
for conception of features, but once you
launch data science can provide you how your
players really behave.

How Clustering help Game Designers

Development

Updates

*source: Anders Drachen, Rafet Sifa, Christian Bauckhage and Christian Thurau

Study made on
the MMO game

Tera.

Dimensionality Reduction

• A group of algorithms that can
decompose multiple dimensions of data
into fewer ones.

• The decomposed dimensions represent
"parts" of data that were highly aligned
with each other.

• The mathematical description of these
new dimensions may seem clunky, but
are interpretable by a data analyst.

• Very useful for metagame analysis.

*source: BigSnarf blog

• The most used method is the Principal Component Analysis (PCA).
• It works by finding new coordinate systems in the data that can potentially

describe latent features, and then projecting 2 or more dimensions into a single
one, losing information in the process.

• For example:

*source: Udacity

Result in 1
dimension.

We want to find
this latent feature

hidden in 2
dimensions.

• Also great to visualize multi-dimensional spaces in
ways anyone can understand.

• Example: here's an analysis made by Jose A. Dianes
on cases of Tuberculosis across 2 decades and all
countries:

Compressing all years to 2
Principal Components

Plotting and
Clustering

Analysis of what the
clusters represent.

https://github.com/jadianes/data-science-your-way/tree/master/03-dimensionality-reduction-and-clustering

z

• Like in the example before, where
the clusters captured the trend over
time for several countries at once,
PCAs can be used to find latent
information and trends in your data

• Here's an example decomposing 34
stats of soccer players in 2018 into
only 2 dimensions, made by Kan
Nishida

How PCAs help
Game Designers

Insights

These axes project
the original stats in

this new space.

1. The dimension PC2 is
strongly associated to
stats that help Defense,
like Marking,
Interception, Strength,
Aggregation.

2. Mid Fields cluster more
towards:
• Short Pass
• Stamina
• Crossing
• Free Kick Accuracy
• Vision
• Shot Power

3. Forward players share much
of the same skill space in PC1
with Mid Fielders, but cluster
more towards:
• Agility
• Acceleration
• Spring Speed
• Finishing.

https://blog.exploratory.io/an-introduction-to-principal-component-analysis-pca-with-2018-world-soccer-players-data-810d84a14eab

... and applying the
model to compare

only Brazil and Japan.

... and applying the
model to compare

only Brazil and Japan.

Neymar

... and applying the
model to compare

only Brazil and Japan.

Neymar

Latent Dirichlet Allocation (LDA)

• A semi-supervised learning
algorithm, used to predict
topics and classify data points
based on the repetition of a
certain content across those
data points.

• It's a "soft" classification
method, in the sense that a
single document can belong to
2 or more topic.

• Hard to train and tune, but can
be work for analysis of multi-
dimensional strategies.

*source: BigSnarf blog

• LDA Topic Modelling is used to discover broader topics of documents of any type,
(include scientific data, like genetic measurements) and relationships between
such topics.

• But was also used for content recommendation and analysis of overlapping
communities in social networks.

*source: Alexis Perrier

LDA on Twitter messages

*source: Debbie Liske

• By revealing and structuring metagame patterns and strategies that players are using.
• Here's an analysis from Hlynur Davíð Hlynsson using LDA to discover and relate deck

strategies in Magic: The Gathering.

How LDA Topic Modelling help Game Designers

The model discover
Archetypes of decks and

the probability that a
certain card will be

present in each deck
Archetype.

Since LDA is a generative
model, we can also make

this model create new
decks!

https://towardsdatascience.com/finding-magic-the-gathering-archetypes-with-latent-dirichlet-allocation-729112d324a6

Reinforcement Learning
RL, Deep RL, and Deep Q-Networks can help gamedev.

Deep Learning

• A class of ML models composed of
stacked Neural Networks.

• Very flexible and very powerful, and
continue to improve over time as the
amount of data increases.

• But costly: hard to tune, time-consuming,
require GPUs, take a lot of processing
time to train.

• Also, nearly impossible to know why and
how a deep learning model makes
decisions.

*source: Andew Ng

*source: Favio Vázquez

• First, lets understand what a Neural Network does. It's an architecture
(usually used as a Classifier) that combines the separation made by
various "neurons".

A "neuron" (Perceptron)

Training
Data

*source: Udacity

Trained to
distinguish the blue

category with a
linear function.

Receives
coordinates of a
new data point.

Outputs the
probability that
point belongs to

the blue category.

*source: Udacity

• However, in the real world, very few datasets
are separable by one line. So then, like in the
example below, we create a network of 2
neurons to create a more complex boundary.

*source: Udacity

*source: Udacity

Neuron 1 thinks the
point has a 70%

probability of being
blue.

Neuron 2 thinks the
point has a 80%

probability of being
blue.

Sums the output of
the two neurons. Math using a

Sigmoid function to
derive a combined
probability of 82%.

A Neural Network

• Finally, for really complicated classifications, we can stack more
layers of neurons that together create a very sophisticated classifier.
The non-linear model of a layer is further expanded into more
complex non-linear boundaries. That's a deep neural network.

*source: Udacity

• The ability to stack more layers and experiment with
different architectures when connecting neurons is
what makes deep neural networks so flexible. And it
can become really sophisticated.

• For example, Google's Inception models:

*source: Google

*source: MathWorks

*source:William Koehrsen

Learning by Trial and Error
• Reinforcement Learning is the one type of Machine

Learning that, in principle, doesn't require loads of
data, but... doesn't do the same things either. :)

• The goal of Reinforcement models is to learn how to
execute tasks from scratch, with minimal human
intervention.

• It's a model based on Markov Decision Processes that
learns on trial-and-error across thousands (millions?)
of attempts, being guided by reward functions across
many tries.

• RL agents that learn to play games by themselves. A
team of Mnih et al. 2015 trained agents in several
different Atari games, frequently achieving super-
human performance.

*source: Shweta Bhatt

• But playing simple mechanics is not good enough.
• Most modern game have some level of RPG and

Strategy, two genres of video games particularly
challenging for RL:

• High-dimensional state space;
• Resource management with cascading consequences;
• Control of many simultaneous features or units;
• Planning long-term progression and “end-game”;
• Time-locked features in free-to-play games;
• Shifting metagame as games update often via Live Ops.

• Multi-agent RL (MARL), Hierarchical RL (HRL), Deep
LTSM and proximal policy optimization (PPO) have
been applied for more efficient learning od sub-
tasks and long-term planning.

• OpenAI Five mastered Dota 2.
• AlphaStar mastered Starcraft 2.

https://deepmind.google/discover/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii/

RL in the real world of game development

• Low application or RL in game development:
• Deep Learning is very costly, both in terms of compute and data science talent.
• On the talent front, the games industry has to compete with much higher-paying industries

like Finance!

• Hard to tune. Game development requires a level of control in every feature.
• Reserchers of Deep RL are not usually trying to solve the industries’ problems for

developers, just to benchmark their creation against the human skills of players.
• OpenAI Five and AlphaStar are impressive but useless for game developers.

• But can their science be used in tools to create and balance new games?
• Games in development without any players?
• Games with long-term economies that scales into years of gameplay?

Reinforcement learning models open a world of
possibilities in conjunction with Deep Neural Networks:

• Enemy AI that is trained instead of coded.
• QA bots that play the engine 24/7 and help test the

work of developers and document bugs.
• Play the metagame and test long-term progression

design and economy, help balance the game
economy and progression. Predict resource inflation.

• Narrative agents without pre-scripted dialogues, that
react to the player's choices more organically.

• Matchmaking for PvP games.

How Reinforcement Learning
help Game Designers

*source: Unity

*source: Unity

RL for Enemy AI
• Unity 3D made a concerned effort to enable RL for game

developers.
• Common example: enemies in an FPS (first person shooter)
• Some developers used it. Most ditched it.

• Because it’s very hard to tune
• Requires a lot of time to get right.

• Didn’t really help to design a game that is more fun
• The AI is not there to win.

• The reward functions for the RL training must factor more subjective
requirements into their math: is the player engaged and entertained?

• Is the player happy? Game designer must test with players and be able
to tune parameters.

• Can it be used? Yes.
• Does it make game development easier or more efficient? No.

RL for QA
• Professional QA have to play the game over and over

again, press the same button litteray hundreds of time per
day.

• Can a RL model be created to test games and code in
development and find bugs?

• Find glitches;
• Corner cases and soft-locks;
• Character gets stuck;
• Crashes.

• Each type and sub-type of issue can demand a very
different RL training and reward functions.

• How can it document what it “sees” in the screen?
• It needs to be able to describe reproduction steps.

• The AI is not there to win.
• Reward functions and math should reward finding issues.

RL for Economy and Balancing
• Games are systems of loops that repeat on top of

each other.
• Loops often involve the exchange of resources and

currencies.

• Lots of modern games have long-term progression
and permanent states of an account (“save-
games”).

• Economic systems can be expressed as constructs
that don’t necessarily need the AI to play the “core
game”,

• This could accelerate training times enough that
RL networks can be re-trained every time game
designers are tuning economic values (example:
“how much Unobtainium does it cost to craft a
new artifact?”).

RL for NPC dialogues
• The main problem is one of immersion. A second main problem is

of a legal and PR nature.

• NPCs have limited knowledge of the world. But each NPC should
know a bit more or less.

• Does the peasant knows about Dyrax the Red Mage in the crystal
tower? He knows the place is scary and people who goes there die.

• Does the travelling merchant knows about Dyrax the Red Mage?
She knows the mage is known to buy black root and spices.

• Does the mayor knows about Dyrax the Red Mage in the crystal
tower? He in fact has a corrupt deal with the mage to not investigate
his crimes, and will lie.

• NPCs must never break character. It’s easy to “game” current LLMs

• PR nightmare: game companies don’t have nearly enough
resources like Bug Tech to test for edge cases of bad speech.

• Can it be done? Yes, but don’t underestimate the “uncanny
valley”.

Thank you!
Questions?

tex@texpine.com
texpine.com

Start here!
http://www.r2d3.us/

https://www.texpine.com/
https://www.linkedin.com/in/texpine/
http://www.r2d3.us/

Appendix
• Icon Game by Orin zuu from the Noun Project

• Icon Lighthouse by Nikita Kozin from the Noun Project

• Icon User by Gagana from the Noun Project

• Icon Car on Sale from all-free-download.com / BSGStudio

• Icon Flag from all-free-download.com / Vector Graphics

• Icon Flag from all-free-download.com / BSGStudio

• All materials sourced on Udacity are subject of Creative Commons Attribution-NonCommercial- NoDerivs 3.0 License, located at
http://creativecommons.org/licenses/by-nc-nd/4.0

http://creativecommons.org/licenses/by-nc-nd/4.0

